Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Iron is an essential micronutrient for phytoplankton and plays an integral role in the marine carbon cycle. The supply and bioavailability of iron are therefore important modulators of climate over glacial-interglacial cycles. Inputs of iron from the Antarctic continental shelf alleviate iron limitation in the Southern Ocean, driving hotspots of productivity. Glacial meltwater fluxes can deliver high volumes of particulate iron. Here, we show that glacier meltwater provides particles rich in iron(II) to the Antarctic shelf surface ocean. Particulate iron(II) is understood to be more bioavailable to phytoplankton, but less stable in oxic seawater, than iron(III). Using x-ray microscopy, we demonstrate co-occurrence of iron and organic carbon-rich phases, suggesting that organic carbon retards the oxidation of potentially-bioavailable iron(II) in oxic seawater. Accelerating meltwater fluxes may provide an increasingly important source of bioavailable iron(II)-rich particles to the Antarctic surface ocean, with implications for the Southern Ocean carbon pump and ecosystem productivity.more » « lessFree, publicly-accessible full text available December 1, 2026
-
The international GEOTRACES program was developed to enhance knowledge about the distribution of trace elements and their isotopes (TEIs) in the ocean and to reduce the uncertainty about their sources, sinks, and internal cycling. Recognizing the importance of intercalibration from the outset, GEOTRACES implemented intercalibration efforts early in the program, and consensus materials were generated that included the full range of TEIs dissolved in seawater, in suspended particles, and from aerosols. The GEOTRACES section cruises include “crossover station(s)” that are occupied by two or more sections and whereby all aspects of sample collection, preservation, and processing can be compared and intercalibrated. Once datasets are generated, an international intercalibration committee reviews intercalibration reports and works with the community to address issues and provide intercalibrated data for intermediate data products. This process has resulted in a highly cooperative community that shares advances in protocols to strengthen capacity building and GEOTRACES outcomes, including an unprecedented oceanic atlas of TEIs, with data quality that is state-of-the-art. This article outlines the development and implementation of the successful GEOTRACES intercalibration process.more » « less
-
Abstract. Supply of iron (Fe) to the surface ocean supports primary productivity, and while hydrothermal input of Fe to the deep ocean is knownto be extensive it remains poorly constrained. Global estimates of hydrothermal Fe supply rely on using dissolved Fe (dFe) toexcess He (xs3He) ratios to upscale fluxes, but observational constraints on dFe/xs3He may be sensitive toassumptions linked to sampling and interpolation. We examined the variability in dFe/xs3He using two methods of estimation, forfour vent sites with different geochemistry along the Mid-Atlantic Ridge. At both Rainbow and TAG, the plume was sampled repeatedly and the range ofdFe/xs3He was 4 to 63 and 4 to 87 nmol:fmol, respectively, primarily due to differences in plume age. To account for backgroundxs3He and shifting plume position, we calibrated He values using contemporaneous dissolved Mn (dMn). Applying thisapproach more widely, we found dFe/xs3He ratios of 12, 4–8, 4–44, and 4–86 nmol fmol−1 for the Menez Gwen, LuckyStrike, Rainbow, and TAG hydrothermal vent sites, respectively. Differences in plume dFe/xs3He across sites were not simplyrelated to the vent endmember Fe and He fluxes. Within 40 km of the vents, the dFe/xs3He ratios decreased to3–38 nmol fmol−1, due to the precipitation and subsequent settling of particulates. The ratio of colloidal Fe to dFe wasconsistently higher (0.67–0.97) than the deep N. Atlantic (0.5) throughout both the TAG and Rainbow plumes, indicative of Fe exchangebetween dissolved and particulate phases. Our comparison of TAG and Rainbow shows there is a limit to the amount of hydrothermal Fe releasedfrom vents that can form colloids in the rising plume. Higher particle loading will enhance the longevity of the Rainbow hydrothermal plume withinthe deep ocean assuming particles undergo continual dissolution/disaggregation. Future studies examining the length of plume pathways required toescape the ridge valley will be important in determining Fe supply from slow spreading mid-ocean ridges to the deep ocean, along with thefrequency of ultramafic sites such as Rainbow. Resolving the ridge valley bathymetry and accounting for variability in vent sources in globalbiogeochemical models will be key to further constraining the hydrothermal Fe flux.more » « less
-
Abstract. Trichodesmium is a globally important marine microbe that provides fixednitrogen (N) to otherwise N-limited ecosystems. In nature, nitrogen fixationis likely regulated by iron or phosphate availability, but the extent andinteraction of these controls are unclear. From metaproteomics analysesusing established protein biomarkers for nutrient stress, we foundthat iron–phosphate co-stress is the norm rather than the exception for Trichodesmium colonies in theNorth Atlantic Ocean. Counterintuitively, the nitrogenase enzyme was moreabundant under co-stress as opposed to single nutrient stress. This isconsistent with the idea that Trichodesmium has a specific physiological state duringnutrient co-stress. Organic nitrogen uptake was observed and occurredsimultaneously with nitrogen fixation. The quantification of the phosphate ABCtransporter PstA combined with a cellular model of nutrient uptake suggestedthat Trichodesmium is generally confronted by the biophysical limits of membrane spaceand diffusion rates for iron and phosphate acquisition in the field. Colonyformation may benefit nutrient acquisition from particulate and organicsources, alleviating these pressures. The results highlight that topredict the behavior of Trichodesmium, both Fe and P stress must be evaluatedsimultaneously.more » « less
-
Abstract The dispersal of dissolved iron (DFe) from hydrothermal vents is poorly constrained. Combining field observations and a modeling hierarchy, we find the dispersal of DFe from the Trans‐Atlantic‐Geotraverse vent site occurs predominantly in the colloidal phase and is controlled by multiple physical processes. Enhanced mixing near the seafloor and transport through fracture zones at fine‐scales interacts with the wider ocean circulation to drive predominant westward DFe dispersal away from the Mid‐Atlantic ridge at the 100 km scale. In contrast, diapycnal mixing predominantly drives northward DFe transport within the ridge axial valley. The observed DFe dispersal is not reproduced by the coarse resolution ocean models typically used to assess ocean iron cycling due to their omission of local topography and mixing. Unless biogeochemical models account for fine‐scale physics and colloidal Fe, they will inaccurately represent DFe dispersal from axial valley ridge systems, which make up half of the global ocean ridge crest.more » « less
An official website of the United States government
